Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2021: 6685307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936213

RESUMO

BACKGROUND: Exosomes from human dental pulp stem cells (hDPSCs) were indicated to play a positive role in vascular regeneration processes. But the angiogenic capabilities of exosomes from inflammatory hDPSCs and the underlying mechanism remain unknown. In this study, the inflammatory factor lipopolysaccharide (LPS) was used to stimulate hDPSCs, and exosomes were extracted from these hDPSCs. The proangiogenic potential of exosomes was examined, and the underlying mechanism was studied. METHOD: Exosomes were isolated from hDPSCs with or without LPS stimulation (N-EXO and LPS-EXO) and cocultured with human umbilical vein endothelial cells (HUVECs). The proangiogenic potential of exosomes was evaluated by endothelial cell proliferation, migration, and tube formation abilities in vitro. To investigate the proangiogenic mechanism of LPS-EXO, microRNA sequencing was performed to explore the microRNA profile of N-EXO and LPS-EXO. Gene Ontology (GO) analysis was used to study the functions of the predicted target genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to estimate the signaling pathways associated with the inflammation-induced angiogenesis process. RESULT: Compared to the uptake of N-EXO, uptake of LPS-EXO activated the angiogenic potential of HUVECs by promoting the proliferation, migration, and tube formation abilities in vitro. The mRNA expression levels of vascular endothelial growth factor (VEGF) and kinase-insert domain-containing receptor (KDR) in the LPS-EXO group were significantly higher than those in the N-EXO group. MicroRNA sequencing showed that 10 microRNAs were significantly changed in LPS-EXO. Pathway analysis showed that the genes targeted by differentially expressed microRNAs were involved in multiple angiogenesis-related pathways. CONCLUSION: This study revealed that exosomes derived from inflammatory hDPSCs possessed better proangiogenic potential in vitro. This is the first time to explore the role of exosomal microRNA from hDPSCs in inflammation-induced angiogenesis. This finding sheds new light on the effect of inflammation-stimulated hDPSCs on tissue regeneration.

2.
Stem Cell Res Ther ; 12(1): 98, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536073

RESUMO

BACKGROUND: Human periodontal ligament stem cells (hPDLSCs) are ideal seed cells for periodontal regeneration. A greater understanding of the dynamic protein profiles during osteogenic differentiation contributed to the improvement of periodontal regeneration tissue engineering. METHODS: Tandem Mass Tag quantitative proteomics was utilized to reveal the temporal protein expression pattern during osteogenic differentiation of hPDLSCs on days 0, 3, 7 and 14. Differentially expressed proteins (DEPs) were clustered and functional annotated by Gene Ontology (GO) terms. Pathway enrichment analysis was performed based on the Kyoto Encyclopedia of Genes and Genomes database, followed by the predicted activation using Ingenuity Pathway Analysis software. Interaction networks of redox-sensitive signalling pathways and oxidative phosphorylation (OXPHOS) were conducted and the hub protein SOD2 was validated with western blotting. RESULTS: A total of 1024 DEPs were identified and clustered in 5 distinctive clusters representing dynamic tendencies. The GO enrichment results indicated that proteins with different tendencies show different functions. Pathway enrichment analysis found that OXPHOS was significantly involved, which further predicted continuous activation. Redox-sensitive signalling pathways with dynamic activation status showed associations with OXPHOS to various degrees, especially the sirtuin signalling pathway. SOD2, an important component of the sirtuin pathway, displays a persistent increase during osteogenesis. Data are available via ProteomeXchange with identifier PXD020908. CONCLUSION: This is the first in-depth dynamic proteomic analysis of osteogenic differentiation of hPDLSCs. It demonstrated a dynamic regulatory mechanism of hPDLSC osteogenesis and might provide a new perspective for research on periodontal regeneration.


Assuntos
Osteogênese , Ligamento Periodontal , Diferenciação Celular , Células Cultivadas , Humanos , Osteogênese/genética , Proteômica , Células-Tronco
3.
J Periodontol ; 92(7): 1049-1059, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33040333

RESUMO

BACKGROUND: Histone methylation is considered to play an important role in the occurrence and development of periodontitis. Plant homeodomain finger protein 8 (PHF8), a histone demethylase, has been shown to regulate inflammation and osteogenic differentiation of bone marrow stromal cells (BMSCs). This study aimed to detect the functions of PHF8 and TLR4 in osteogenic differentiation in an inflammatory environment induced by Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) METHODS: A periodontitis mouse model was established, and the mice were treated with TAK-242. Immunohistochemical staining was used to detect the expression of PHF8 in periodontal tissue. Periodontal ligament cells (PDLCs) were treated with mineralization induction medium supplemented with Pg-LPS and/or TAK-242, and a Cell Counting Kit-8 (CCK-8) assay was used to detect the proliferation of PDLCs. Real-time PCR and western blotting were used to detect the mRNA and protein expression levels, respectively, of PHF8, toll-like receptor 4 (TLR4) and the other osteogenic markers alkaline phosphatase (ALP), osteocalcin (OCN), Special AT-rich sequence-binding protein 2 (Satb2) and Runt-related transcription factor 2 (Runx2) RESULTS: Periodontitis reduced PHF8 expression in periodontal tissue, and TAK-242 partially reversed this downregulation. An in vitro experiment revealed that the mRNA and protein expression levels of PHF8 were significantly upregulated during the osteogenic differentiation of PDLCs. Alizarin red staining showed that the mineralized nodules of PDLCs in osteogenic induction group were more than those in control group. Real-time PCR and western blot results indicated that Pg-LPS inhibited PHF8 expression and upregulated TLR4 expression in PDLCs. TAK-242 inhibited TLR4 and partially reversed the inhibition of PHF8 expression and osteogenic differentiation induced by Pg-LPS in PDLCs CONCLUSION: PHF8 and TLR4 play important roles in periodontitis. Pg-LPS inhibits the expression of PHF8 via upregulation of TLR4 and might further inhibit the osteogenic differentiation of PDLCs. However, the specific mechanisms involved remain to be explored.


Assuntos
Osteogênese , Ligamento Periodontal , Fosfatase Alcalina , Animais , Diferenciação Celular , Células Cultivadas , Histona Desmetilases , Camundongos , Receptor 4 Toll-Like , Fatores de Transcrição
4.
Stem Cell Res Ther ; 11(1): 114, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169113

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play an important role in the multiple differentiations of mesenchymal stem cells (MSCs). However, few studies have focused on the regulatory mechanism of lncRNAs in the odontogenic differentiation of human dental pulp stem cells (hDPSCs). METHODS: hDPSCs were induced to differentiate into odontoblasts in vitro, and the expression profiles of lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in differentiated and undifferentiated cells were obtained by microarray. Bioinformatics analyses including Gene Ontology (GO) analysis, pathway analysis, and binding site prediction were performed for functional annotation of lncRNA. miRNA/odontogenesis-related gene networks and lncRNA-associated ceRNA networks were constructed. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was used to verify the expression of selected genes. RNA fluorescence in situ hybridization (FISH), qRT-PCR, and western blot analysis were used to explore the location and function of lncRNA-G043225. Dual-luciferase reporter assay was performed to confirm the binding sites of miR-588 with G043225 and Fibrillin 1 (FBN1). RESULTS: We identified 132 lncRNAs, 114 miRNAs, and 172 mRNAs were differentially expressed. GO analysis demonstrated that regulation of the neurogenic locus notch homolog (Notch), Wnt, and epidermal growth factor receptor (ERBB) signaling pathways and activation of mitogen-activated protein kinase (MAPK) activity were related to odontogenic differentiation. Pathway analysis indicated that the most significant pathway was the forkhead box O (FoxO) signaling pathway, which is related to odontogenic differentiation. Two odontogenesis-related gene-centered lncRNA-associated ceRNA networks were successfully constructed. The qRT-PCR validation results were consistent with the microarray analysis. G043225 mainly locating in cytoplasm was proved to promote the odontogenic differentiation of hDPSCs via miR-588 and FBN1. CONCLUSION: This is the first study revealing lncRNA-associated ceRNA network during odontogenic differentiation of hDPSCs using microarray, and it could provide clues to explore the mechanism of action at the RNA-RNA level as well as novel treatments for dentin regeneration based on stem cells.


Assuntos
MicroRNAs , RNA Longo não Codificante , Diferenciação Celular , Polpa Dentária , Redes Reguladoras de Genes , Humanos , Hibridização in Situ Fluorescente , MicroRNAs/genética , Odontogênese , RNA Longo não Codificante/genética , Células-Tronco
5.
Mol Med Rep ; 20(4): 3924-3932, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31485628

RESUMO

The present study aimed to investigate the effects of vascular endothelial growth factor (VEGF) and insulin­like growth factor­1 (IGF­1) on the proliferation, migration and differentiation of human carious dental pulp stem cells (hCDPSCs), and to elucidate the underlying mechanism(s). Cell counting kit­8 assay was used to detect the effect of different concentrations of IGF­1 and VEGF on the proliferation of hCDPSCs. Transwell assay was used to detect the migratory ability of the hCDPSCs. Alizarin red and alkaline phosphatase (ALP) staining were used to detect the osteogenic ability of hCDPSCs, whereas the angiogenic ability of the hCDPSCs was tested by tube formation assay. Reverse transcription­quantitative polymerase chain reaction (RT­qPCR) and western blotting were used to detect the expression levels of associated genes and proteins. IGF­1 (100 ng/ml) or VEGF (25 ng/ml) alone were revealed to be able to promote proliferation and migration of hCDPSCs; however, the combined use of IGF­1 and VEGF enhanced this effect when compared with the use of either agent in isolation. Alizarin red and ALP staining revealed that the use of either VEGF or IGF­1 alone did not result in any significant effects, whereas their use in combination promoted the osteogenic differentiation of hCDPSCs. In addition, the RT­qPCR and western blotting analyses revealed that the expression levels of Runt­related transcription factor 2 (RUNX2), bone sialoprotein (BSP) and ALP were increased upon combined treatment of the cells with VEGF and IGF­1. The expression levels of VEGF and plateletderived growth factor (PDGF) in hCDPSCs were enhanced upon treatment with either VEGF or IGF­1 in isolation, with greater effects observed when VEGF and IGF­1 were added in combination, indicating that VEGF and IGF­1 may exert a synergistic role in these events. Further experiments revealed that the combination of VEGF and IGF­1 led to an activation of the AKT signaling pathway. The proliferation and angiogenesis of hCDPSCs were also shown to be more effective compared with treatment with either VEGF or IGF­1 in isolation. Taken together, the present study has demonstrated that the combined use of VEGF and IGF­1 leads to an increase in the proliferation, migration, osteogenesis and angiogenesis of hCDPSCs and, furthermore, these signaling molecules may mediate their effects via activation of the AKT signaling pathway.


Assuntos
Polpa Dentária/citologia , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Cárie Dentária/metabolismo , Polpa Dentária/metabolismo , Feminino , Humanos , Masculino , Neovascularização Fisiológica , Osteogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
6.
J Periodontal Res ; 54(3): 266-277, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30450635

RESUMO

BACKGROUND AND OBJECTIVE: This study aimed to discover the distinctive MicroRNAs (miRNA) functioning in the pathogenesis of periodontal inflammation, which might be potential therapy targets of chronic periodontitis. MATERIAL AND METHODS: miRNA profiles of human inflamed gingival tissue from three previous microarrays were re-analysed. Gingival tissues were collected for the validation of overlapping miRNAs, and a network was constructed to show regulatory connection between overlapping miRNAs and periodontitis-associated target genes. Potential miRNAs were screened based on their expression levels and predicted target genes. Correlation analysis and binding site prediction were conducted to reveal the relationship between the potential miRNAs and their target genes. RESULTS: miR-144-5p, found to be upregulated in all three studies, showed the greatest upregulation (P < 0.0001). Another 16 miRNAs (10 upregulated and six downregulated) overlapped between any two of the three studies. All overlapping miRNAs had expected expression levels except for miR-203 during validation. Ten miRNAs (six upregulated and four downregulated) were found to have periodontal inflammation-associated targets. Cyclooxygenase 2 (COX2) and interleukin-17F (IL17F), predicted target genes of upregulated miR-144-5p, showed significant decreases and were negatively correlated with miR-144-5p in the periodontitis group (r = -0.742 for COX2, r = -0.615 for IL17F). CONCLUSION: This re-analysis of miRNA signatures has implied the potential regulatory mechanism of miR-144-5p and its potential for exploring alternative therapeutic approaches, especially those that use miRNA delivery systems to treat chronic periodontitis. Nevertheless, further study based on larger sample size and homogenous cells is needed to reveal the exact roles of miRNAs in chronic periodontitis.


Assuntos
Periodontite Crônica/genética , Periodontite Crônica/metabolismo , Ciclo-Oxigenase 2/metabolismo , Gengiva/metabolismo , Interleucina-17/metabolismo , MicroRNAs/metabolismo , Terapia de Alvo Molecular , Adulto , Periodontite Crônica/terapia , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima
7.
J Proteomics ; 179: 122-130, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545170

RESUMO

To seek a potential target for periodontal tissue regeneration, this study aimed to explore the role of Integrin alpha 5 (ITGA5) in human periodontal ligament stem cells (PDLSCs). Transwell assay, Cell Counting Kit 8 (CCK8) assay, cell cycle assay, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot were used to investigate the effects of ITGA5 on PDLSC migration, proliferation and osteogenic differentiation. The in vivo effect was investigated by nude mice subcutaneous transplantation with cell and hydroxyapatite/ß-tricalcium phosphate (HA/ß-TCP) complex. The involved mechanism was explored by the iTRAQ proteomic technique and validated by western blot and immunofluorescence. We found that ITGA5forced expression enhanced the proliferation, migration, and osteogenic capacity of PDLSCs, while inhibited ITGA5 expression had the opposite effects. The phosphorylation of focal adhesion kinase (FAK), phosphatidylinositide 3-kinases/protein kinase B (PI3K/AKT), and mitogen-activated protein kinase kinase/extracellular signal-regulated protein kinases 1 and 2 (MEK1/2/ERK1/2) were crucial in this process. Forced expression of ITGA5 in PDLSCs increased osteoid and PDL-like tissue formation in vivo. Proteomic and bioinformatic analysis revealed that cytoskeleton and cell cycle changes were involved. Keratin, type II cytoskeletal 6B (KRT6B) and desmin (DES) may distinguish this process and serve as new markers of PDLSC differentiation. SIGNIFICANCE: Periodontitis is highly prevalent and can impair PDL and teeth functioning. One of the most promising therapies to periodontitis therapies is PDL regeneration by utilizing PDLSCs. While many obstacles remain to be resolved, the regulation of PDLSC osteogenic differentiation is a main concern. The present study demonstrated the potential clinical value of an ITGA5 priming peptide, which may be utilized in PDL tissue repair and regeneration. The mechanism elucidated in this study would help to fuel its application.


Assuntos
Ciclo Celular , Diferenciação Celular , Citoesqueleto/metabolismo , Integrinas/metabolismo , Sistema de Sinalização das MAP Quinases , Osteogênese , Ligamento Periodontal/metabolismo , Células-Tronco/metabolismo , Animais , Citoesqueleto/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Camundongos Nus , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligamento Periodontal/patologia , Periodontite/metabolismo , Periodontite/terapia , Células-Tronco/patologia
8.
J Periodontol ; 88(10): 1105-1113, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28598283

RESUMO

BACKGROUND: The roles of microRNAs (miRNAs) in osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) remain largely unexplored. In this study, the underlying molecular mechanism of osteogenic differentiation in hPDLSCs is investigated using miRNA profiling. METHODS: The miRNA expression profile during osteogenic differentiation was analyzed using a microarray. Target genes of miRNAs with at least two-fold change in expression (P <0.05) were predicted by bioinformatics. Six miRNAs with osteogenesis-related target genes were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS: Expression of 116 miRNAs was found to be altered after osteoinduction, with 30 upregulated and 86 downregulated. Thirty-one of these miRNAs (26.7%) had osteogenesis-related target genes. Changes in expression levels of six of the 31 miRNAs (miR-654-3p, miR-4288, miR-34c-5p, miR-218-5p, miR-663a, and miR-874-3p) were validated by qRT-PCR. CONCLUSIONS: Significant alterations in miRNA expression profiles were observed during osteogenic differentiation of hPDLSCs. These results imply that miRNAs may have regulatory effects on this process by targeting osteogenesis-related genes.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs/genética , Osteogênese/genética , Ligamento Periodontal/citologia , Células-Tronco/fisiologia , Adolescente , Adulto , Diferenciação Celular/genética , Feminino , Humanos , Masculino , Análise em Microsséries , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...